<u>CNMCA, Sala Briefing dell'aeroporto "Mario de Bernardi"</u> <u>Pratica di Mare-Pomezia (Roma)</u> <u>Venerdì 13 Febbraio 2009, ore 10.30</u>

"Simulazione e ricostruzione di immagini satellitari sul mare" Ferdinando Reale

<u>freale@unisa.it</u> CUGRI - University Centre for Research on Major Hazards 84084 Fisciano, Italy

Possibili applicazioni sul mare

Immagini bidimensionali ad alta risoluzione (da pochi metri a qualche decina di metri) dell'area osservata

IL SAR (Synthetic Aperture Radar)

Interferenza di Bragg

Riflessione speculare dell'energia incidente nel caso di superficie perfettamente piana Riflessione diffusa dell'energia incidente in presenza di onde capillari o di Bragg (*Wright 1968 e Valenzuela 1978*)

Il modello a due scale (Wright 1975)

L'apertura sintetica

Doppler shift (Alpers)

Procedura numerica

Bruening, C., Alpers W. & Hasselmann (1990)

Bovolin; Cassese; Pugliese Carratelli (1997)

Della Rocca; Pugliese Carratelli (2000)

Pugliese Carratelli; Reale; Chapron; Dentale (2008)

.

Generazione pseudo-casuale della superficie marina: teoria

La teoria lineare delle onde reali

1)
$$\eta(x, y, t) = \sum_{i=1}^{N} \sum_{j=1}^{M} A_{i,j} \cos(k_i x \sin \theta_j + k_i y \cos \theta_j - \omega_i t + \phi_{i,j})$$

2)
$$V_x(x, y, t) = g \sum_{i=1}^{N} \sum_{j=1}^{M} A_{i,j} \omega_i^{-1} k_i \cos(\omega_i t - k_i x \cos \theta_j - k_i y \sin \theta_j + \phi_{i,j})$$

Le fasi $\phi_{i,j}$ sono uniformemente distribuite nell'intervallo [0, 2 π]

3)
$$A_{i,j} = \sqrt{2 \cdot S_d(\omega_i, \vartheta_j) \cdot d\vartheta \cdot df}$$
 $A_{i,j} = ampiezze spettrali$

4) I numeri d'onda k_i e le frequenze angolari ω_i sono legate dall'equazione della dispersione lineare

Gli spettri unidirezionali

sviluppato (inverse wave age $\Omega = 0.84$) e una velocità del vento U₁₀ = 10 ms⁻¹

Le funzioni di spreading per la dispersione direzionale

Lo spettro direzionale

Generazione pseudo-casuale della superficie marina: risultati

Mare di vento

Ricostruzione effetto di tilt

Valenzuela 1978

Cmod (LOCALE)

L'effetto di tilt

Distribuzioni di frequenza angoli d'incidenza locali

Risultati simulazione tilt: in direzione Range

Onde

 $H_s = 4m; L_p = 150m; s_p = 75$

Risultati simulazione tilt: in direzione <u>Azimuth</u>

Onde

 $H_s = 4m; L_p = 250m; s_p = 75$


```
function[lsar]=Doppler_shift(tilt,shift,dy);
```

```
[Ny Nx]=size(tilt);
for ii=1:Ny
  for jj=1:Nx
     i_nuovo(ii,jj)=round(shift(ii,jj)/dy)+ii;
  end
end
Isar=zeros(Ny,Nx);
for ii=1:Nx
  for jj=1:Ny
     if (i_nuovo(jj,ii)>=1 & i_nuovo(jj,ii)<=Ny)
        lsar(i_nuovo(jj,ii),ii)=lsar(i_nuovo(jj,ii),ii)+tilt(jj,ii);
     end
  end
end
return;
```

Sovrapposizione delle faccette

$$y_{nuovo} = y' + \xi(y') = y' + \frac{R}{V_{piat}} u_r(y')$$

Risultati simulazione tilt + shift: Onde in direzione <u>Range</u>

$$H_s = 4m; L_p = 150m; s_p = 75$$

- a) Elevazione superficie marina
- b) Modulazione RAR (solo tilt)
- c) Modulazione SAR (tilt + shift)

Risultati simulazione tilt + shift: Onde in direzione <u>Azimuth</u>

$$H_s = 4m; L_p = 250m; s_p = 75$$

- a) Elevazione superficie marina
- b) Modulazione RAR (solo tilt)
- c) Modulazione SAR (tilt + shift)

Cut-off

Risultati simulazione tilt + shift: Onde a 45°

La rottura delle onde (whitecap formation)

Whitecap fraction variation

Problematiche

- 1) Dove è localizzata materialmente la rottura delle onde e la conseguente presenza di schiuma?
- 2) Qual è il coefficiente di backescattering della schiuma?

Sang - HO OH (2004)

- Geometrico: la rottura avviene quando si ha il superamento di determinati valori soglia da parte di alcuni parametri legati alla geometria delle onde. Il parametro usato in genere è la ripidità dell'onda definita come rapporto H/gT² ed il valore soglia è fissato pari a 0.2
- Cinematico: la rottura avviene quando il rapporto tra la componente orizzontale u delle velocità orbitali in cresta e la celerità di fase c delle onde è > 1
- 3) Dinamico: la rottura avviene quando la componente verticale negativa delle accelerazioni locali è inferiore ad un limite prefissato

Inserimento della rottura nel nostro modello

Esempio pratico

Applicazione ad un caso reale

Satellite: ERS - 2 Orbita: 24482 Traccia: 79 Frame 2781 Passaggio discendente

Evento nel Tirreno del dicembre 1999

Area esaminata e dati boa di Ponza

Risultati simulazione

Risultati simulazione

1.5

0.5

Backscattering coefficients σ_0 - 2.5 Azimuth direction [m] Range direction [m] Frequenza [%] 1 1.5 2 2.5 3 Immagine reale 0.5 3.5

Introduzione whitecaps

Risultati simulazione con whitecaps

1.5

0.5

Backscattering coefficients σ_0

SAR IMAGE WITH WHITECAPS pixel dimension 12.5m x 12.5m

RADARSAT HURRICANE APPLICATIONS PROJECT

Principal Investigators (PIs)	PI Affiliations	Co-Investigators (CIs)	CI Affiliations
Eugenio Pugliese Carratelli	C.U.G.RI. (University Centre for Research of Major Hazard) University of Salerno	 Francisco J Ocampo-Torres Bertrand Chapron Louis Cordoba Fabio Dentale Ferdinando Reale Giuseppe Spulsi Francesca Napoli 	 Departamento de Oceanografía Física, División de Oceanología, CICESE, México CERSAT (Centre for Satellite Exploitation and Research) CUJAE, Habana, Cuba University of Salerno University of Salerno C.U.G.RI C.U.G.RI

L'uragano Katrina

Data: 28-08-2005 Ora: 23:48:40 orbita: 51242 Direction:ASCENDING

Data: 27-08-2005 Ora: 11:28:35 orbita: 51220 Direction:DESCENDING

Data: 28-08-2005 Ora: 23:48:40 orbita: 51242 Direction:ASCENDING

